16 research outputs found

    Ultra-broadband surface-normal coherent optical receiver with nanometallic polarizers

    Full text link
    A coherent receiver that can demodulate high-speed in-phase and quadrature signals of light is an essential component for optical communication, interconnects, imaging, and computing. Conventional waveguide-based coherent receivers, however, exhibit large footprints, difficulty in coupling a large number of spatial channels efficiently, and limited operating bandwidth imposed by the waveguide-based optical hybrid. Here, we present a surface-normal coherent receiver with nanometallic-grating-based polarizers integrated directly on top of photodetectors without the need for an optical hybrid circuit. Using a fabricated device with the active section occupying a 70-{\mu}m-square footprint, we demonstrate demodulation of high-speed (up to 64 Gbaud) coherent signals in various formats. Moreover, ultra-broadband operation from 1260 nm to 1630 nm is demonstrated, thanks to the wavelength-insensitive nanometallic polarizers. To our knowledge, this is the first demonstration of a surface-normal homodyne optical receiver, which can easily be scaled to a compact two-dimensional arrayed device to receive highly parallelized coherent signals.Comment: 23 pages, 4 figures (main manuscript) + 4 pages, 2 figures (supporting info

    Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Get PDF
    Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm) was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1) without antireflection coating (ARC) layer, (2) with TiO2-compact ARC film, and (3) with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88%) owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2) when compared with a single TiO2-compact ARC

    Totally Vacuum-Free Processed Crystalline Silicon Solar Cells over 17.5% Conversion Efficiency

    No full text
    In this work, we introduce a totally vacuum-free cost-efficient crystalline silicon solar cells. Solar cells were fabricated based on low-cost techniques including spin coating, spray pyrolysis, and screen-printing. A best efficiency of 17.51% was achieved by non-vacuum process with a basic structure of <AI/p+/p−Si/n+/SiO2/TiO2/Ag> CZ-Si p-type solar cells. Short circuit current density (JSC) and open circuit voltage (VOC) of the best cell were measured as 38.1 mA·cm−2 and 596.2 mV, respectively with fill factor (FF) of 77.1%. Suns-Voc measurements were carried out and the detrimental effect of the series resistance on the performance was revealed. It is concluded that higher efficiencies are achievable by the improvements of the contacts and by utilizing good quality starting wafers

    Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in <i>Arabidopsis</i>

    No full text
    <div><p>Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in <i>Arabidopsis</i> are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.</p></div

    Effects of GR24 on Acid Phosphatase Secretion in 10-Day-Old Seedlings.

    No full text
    <p><b>(A)</b> Acid phosphatase activity on root surfaces as detected by treatment with 5-bromo-4-chloro-3-indolyl phosphate <i>p</i>-toluidine salt (BCIP). Scale bar = 5 mm. <b>(B)</b> Acid phosphatase activities as detected by treatment with <i>p</i>-nitrophenylphosphate (<i>p</i>NPP). Data are the means ± SD of 6 (WT and <i>max2-1</i>) and 5 (<i>max1-1</i>) replicates (each replicate contained six or more seedlings). Three independent experiments were performed with similar results. * indicates significant differences from control plants (Student’s t-test, <i>P</i> < 0.01).</p
    corecore